Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T.
نویسندگان
چکیده
BACKGROUND Transgenic mouse models expressing a missense mutation (R92Q) or a splice donor site mutation (trunc) in the cardiac troponin T (cTnT) model familial hypertrophic cardiomyopathy (FHC) in humans. Although males from these strains share the unusual property of having significantly smaller ventricles and cardiac myocytes, they differ with regard to systolic function, fibrosis, and gene expression. Little is known about how these phenotypes affect the responses to additional pathological stimuli. METHODS AND RESULTS We tested the ability of hearts of both sexes of wild-type and mutant mice to respond to defined pathological, pharmacological, hypertrophic stimuli in vivo. Hearts of mutant cTnT models of both sexes were able to undergo hypertrophy in response to at least one stimulus, but the extent differed between the 2 mutants and was sex specific. Interestingly, the trunc-mutant mouse heart was resistant to the development of fibrosis in response to pharmacological stimuli. Stimulation with 2 adrenergic agonists led to sudden cardiac death of all male but not female mutant animals, which suggests altered adrenergic responsiveness in these 2 models of FHC. CONCLUSIONS Hypertrophic signaling is differentially affected by distinct mutations in cTnT and is sex modified. Hearts can respond with either an augmented hypertrophic and fibrotic response or a diminished hypertrophy and resistance to fibrosis. Sudden cardiac death is related to adrenergic stress and is independent of the development of fibrosis but occurred only in male mice. These results suggest that patients with certain TnT mutations may respond to certain pathological situations with a worsened phenotype.
منابع مشابه
Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy.
Multiple mutations in cardiac troponin T (cTnT) can cause familial hypertrophic cardiomyopathy (FHC). Patients with cTnT mutations generally exhibit mild or no ventricular hypertrophy, yet demonstrate a high frequency of early sudden death. To understand the functional basis of these phenotypes, we created transgenic mouse lines expressing 30%, 67%, and 92% of their total cTnT as a missense (R9...
متن کاملA truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy.
Mutations in multiple cardiac sarcomeric proteins including myosin heavy chain (MyHC) and cardiac troponin T (cTnT) cause a dominant genetic heart disease, familial hypertrophic cardiomyopathy (FHC). Patients with mutations in these two genes have quite distinct clinical characteristics. Those with MyHC mutations demonstrate more significant and uniform cardiac hypertrophy and a variable freque...
متن کاملHypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease.
BACKGROUND Patients with hypertrophic cardiomyopathy (HCM) are at increased risk of premature death; this is particularly apparent for patients with mutations of the troponin T gene. Myocyte disarray and interstitial fibrosis, pathological features of HCM, may be determinants in these deaths. The relation between genotype, pathological phenotype, and mode of death has not been explored. METHO...
متن کاملCardiac troponin T mutations promote life-threatening arrhythmias.
Mutations in contractile proteins in heart muscle can cause anatomical changes that result in cardiac arrhythmias and sudden cardiac death. However, a conundrum has existed because mutations in one such contractile protein, a so-called Ca2+ sensor troponin T (TnT), can promote ventricular rhythm disturbances even in the absence of hypertrophy or fibrosis. Thus, these mutations must enhance abno...
متن کاملThe Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats
Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 110 15 شماره
صفحات -
تاریخ انتشار 2004